
OS08: Virtual Memory I *

Based on Chapter 6 of [Hai19]

Jens Lechtenbörger

Computer Structures and Operating Systems 2022

1 Introduction

1.1 OS Plan
� OS Overview (Wk 20)

� OS Introduction (Wk 20)

� Interrupts and I/O (Wk 21)

� Threads (Wk 22)

� Thread Scheduling (Wk 22)

� Mutual Exclusion (MX) (Wk 24)

� MX in Java (Wk 25)

� MX Challenges (Wk 25)

� Virtual Memory I (Wk 26)

� Virtual Memory II (Wk 26)

� Processes (Wk 27)

� Security (Wk 28)

Figure 1: OS course plan, summer 2022

1.2 Today's Core Questions

� What is virtual memory?

� How can RAM be (de-) allocated �exibly under multitasking?

� How does the OS keep track for each process what data resides where
in RAM?

*This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.

1

Operating-Systems-Introduction.org
Operating-Systems-Introduction.org
Operating-Systems-Interrupts.org
Operating-Systems-Threads.org
Operating-Systems-Scheduling.org
Operating-Systems-MX.org
Operating-Systems-MX-Java.org
Operating-Systems-MX-Challenges.org
Operating-Systems-Memory-I.org
Operating-Systems-Memory-II.org
Operating-Systems-Processes.org
Operating-Systems-Security.org
https://lechten.gitlab.io/OS/Operating-Systems-Memory-I.html
https://gitlab.com/lechten/OS
https://gitlab.com/lechten/OS

1.3 Learning Objectives

� Explain mechanisms and uses for virtual memory

� Including principle of locality and page fault handling

� Including access of data on disk

� Explain and perform address translation with page tables

1.4 Previously on OS . . .

1.4.1 Retrieval Practice

� How are processes and threads related?

� What happens when an interrupt is triggered (e.g., a page fault)?

1.4.2 Recall: RAM in Hack

1.5 Big Picture

Figure 2: Big picture for virtual memory

The key idea of virtual memory management is to provide a layer of abstraction that hides
allocation of the shared hardware resource RAM to individual processes. Thus, processes (and
their threads) do not need to care or know whether or where their data structures reside in
RAM.

Physical memory consists of RAM and secondary storage devices such as SSDs or HDDs.
Typically, the OS uses dedicated portions of secondary storage as so-called swap areas or
paging areas to enlarge physical memory beyond the size of RAM. Again, processes need
neither care nor know about this fact, which is handled by OS in the background.

Each process has its own individual virtual address space, starting at address 0, consisting
of equal-sized blocks called pages (e.g., 4 KiB in size each). Each of those pages may or may

2

Operating-Systems-Introduction.org
Operating-Systems-Interrupts.org
Operating-Systems-Interrupts.org

not be present in RAM. RAM in turn is split into frames (of the size of pages). The OS loads
pages into frames and keeps track what pages of virtual address spaces are located where in
physical memory.

Here you see a process with a virtual address space consisting of 10 pages (numbered 0
to 9, implying that the virtual address space has a size of 10*4 KiB = 40 KiB), while RAM
consists of 8 frames (numbered 0 to 7, implying that RAM has a size of 8*4 KiB = 32 KiB).
For example, page 0 is located in frame 6, while page 3 is located on disk, and frames 2, 3,
and 7 are not allocated to the process under consideration.

Notice that neighboring pages in the virtual address space may be allocated in arbitrary
order in physical memory. As processes and threads just use virtual addresses, they do not
need to know about such details of physical memory.

Code of threads just uses virtual addresses within machine instructions, and it is the OS's
task to locate the corresponding physical addresses in RAM or to bring data from secondary
storage to RAM in the �rst place.

1.6 Di�erent Learning Styles

� The bullet point style may be particularly challenging for this presentation

� You may prefer this 5-page introduction

� It provides an alternative view on

* Topics of Introduction and Main Concepts

* Topics of section Paging

� After working through that text, you may want to jump directly to
the corresponding JiTT tasks to check your understanding

* Afterwards, come back here to look at the slides, in particular
work through section Uses for Virtual Memory (not covered in
the text)

� Besides, Chapter 6 of [Hai19] is about virtual memory

Table of Contents

2 Main Concepts

2.1 Modern Computers

� RAM is byte-addressed (1 byte = 8 bits)

� Each address selects a byte (not a word as in Hack)

* (Machine instructions typically operate on words (= multiple
bytes), though)

� Physical vs virtual addresses

� Physical: Addresses used on memory bus

* Hack address

� Virtual: Addresses used by threads and CPU

* Do not exist in Hack

3

2.2 Virtual Addresses

� Additional layer of abstraction provided by OS

� Programmers do not need to worry about physical memory locations
at all

� Pieces of data (and instructions) are identi�ed by virtual addresses

* At di�erent points in time, the same piece of data (identi�ed
by its virtual address) may reside at di�erent locations in RAM
(identi�ed by di�erent physical addresses) or may not be present
in RAM at all

� OS keeps track of (virtual) address spaces: What (virtual address) is
located where (physical address)

� Supported by hardware, memory management unit (MMU)

* Translation of virtual into physical addresses (see next slide)

2.2.1 Memory Management Unit

Figure 3: �Figure 6.4 of [Hai17]� by Max Hailperin under CC BY-SA 3.0; con-
verted from GitHub

When the CPU executes machine instructions, only virtual addresses occur in those instruc-
tions, which need to be translated into physical RAM addresses to be used on the address
bus. A piece of hardware called memory management unit (MMU) performs that translation,
before resulting physical addresses are used on the memory's address bus to access RAM
contents, i.e., data.

As explained in detail later on, the OS manages data structures called page tables to keep
track of what virtual addresses correspond to what physical addresses, and the MMU uses
those page tables during address translation. Also, as discussed in the next presentation but
not shown here, the MMU uses a special cache called translation lookaside bu�er (TLB) to
speed up address translation.

2.3 Processes

� OS manages running programs via processes

� More details in upcoming presentation

� For now: Process ≈ group of threads that share a virtual address space

� Each process has its own address space

* Starting at virtual address 0, mapped per process to RAM by
the OS, e.g.:

· Virtual address 0 of process P1 located at physical address 0

4

https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0604.pdf
Operating-Systems-Processes.org

· Virtual address 0 of process P2 located at physical address
16384

· Virtual address 0 of process P3 not located in RAM at all

* Processes may share data (with OS permission), e.g.:

· BoundedBuffer located at RAM address 42

· Identi�ed by virtual address 42 in P1, by 4138 in P3

� Address space of process is shared by its threads

* E.g., for all threads of P2, virtual address 0 is associated with
physical address 16384

2.4 Pages and Page Tables

� Mapping between virtual and physical addresses does not happen at level
of bytes

� Instead, larger blocks of memory, say 4 KiB

* Blocks of virtual memory are called pages

* Blocks of physical memory (RAM) are called (page) frames

� OS manages a page table per process

� One entry per page

* In what frame is page located (if present in RAM)

* Additional information: Is page read-only, executable, or modi-
�ed (from an on-disk version)?

2.4.1 Page Fault Handler

� Pages may or may not be present in RAM

� Access of virtual address whose page is in RAM is called page hit

* (Access = CPU executes machine instruction referring to that
address)

� Otherwise, page miss

� Upon page miss, a page fault is triggered

� Special type of interrupt

� Page fault handler of OS responsible for disk transfers and page
table updates

* OS blocks corresponding thread and manages transfer of page to
RAM

* (Thread runnable after transfer complete)

2.5 Drawing for Page Tables

Warning! External �gure not included: �The page table� © 2016 Julia Evans,
all rights reserved from julia's drawings. Displayed here with personal permis-
sion.
(See HTML presentation instead.)

5

https://en.wikipedia.org/wiki/Binary_prefix#kibi
Operating-Systems-Interrupts.org
Operating-Systems-Scheduling.org
https://drawings.jvns.ca/pagetable/

3 Uses for Virtual Memory

3.1 Private Storage

� Each process has its own address space, isolated from others

� Autonomous use of virtual addresses

* Recall: Virtual address 0 used di�erently in every process

� Underlying data protected from accidental and malicious modi�-
cations by other processes

* OS allocates frames exclusively to processes (leading to disjoint
portions of RAM for di�erent processes)

* Unless frames are explicitly shared between processes

· Next slide

� Processes may partition address space

� Read-only region holding machine instructions, called text

� Writable region(s) holding rest (data, stack, heap)

3.2 Controlled Sharing

� OS may map limited portion of RAM into multiple address spaces

� Multiple page tables contain entries for the same frames then

* See smem demo later on

� Shared code

� If same program runs multiple times, processes can share text

� If multiple programs use same libraries (libXYZ.so under GNU/Linux,
DLLs under Windows), processes can share them

3.2.1 Copy-On-Write Drawing

Warning! External �gure not included: �Copy on write� © 2016 Julia Evans,
all rights reserved from julia's drawings. Displayed here with personal permis-
sion.
(See HTML presentation instead.)

3.2.2 Copy-On-Write (COW)

� Technique to create a copy of data for second process

� Data may or may not be modi�ed subsequently

� Pages not copied initially, but marked as read-only with access by second
process

� Entries in page tables of both processes point to original frames

� Fast, no data is copied

6

https://drawings.jvns.ca/copyonwrite/

� If process tries to write read-only data, MMU triggers interrupt

� Handler of OS copies corresponding frames, which then become
writable

* Copy only takes place on write

� Afterwards, write operation on (now) writable data

3.3 Flexible Memory Allocation

� Allocation of RAM does not need to be contiguous

� Large portions of RAM can be allocated via individual frames

* Which may or may not be contiguous

* See next slide or big picture

� The virtual address space can be contiguous, though

3.3.1 Non-Contiguous Allocation

Figure 4: �Figure 6.9 of [Hai17]� by Max Hailperin under CC BY-SA 3.0; con-
verted from GitHub

3.4 Persistence

� Data kept persistently in �les on secondary storage

� When process opens �le, �le can be mapped into virtual address space

� Initially without loading data into RAM

* See page 3 in big picture

� Page accesses in that �le trigger page faults

* Handled by OS by loading those pages into RAM

· Marked read-only and clean

� Upon write, MMU triggers interrupt, OS makes page writable and
remembers it as dirty (changed from clean)

* Typically with MMU hardware support via dirty bit in page
table

* Dirty = to be written to secondary storage at some point in time

· After being written, marked as clean and read-only

7

https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0609.pdf

Typical OSs o�er �le systems for the persistent storage of data on disks, where persistent
means that (in contrast to RAM) such data remains safely in place even if the machine is
powered down. Di�erent OSs o�er di�erent system calls for �le access, and this slide focuses
on a technique called memory-mapped �les. Here, the �le is simply mapped into the virtual
address space of the process containing the thread, which invokes the system call. �Mapping�
means that afterwards the �le's bytes are available starting at a virtual address returned by
the system call.

Initially, no data needs to be loaded into RAM at all. If the thread now tries to access a
byte belonging to the �le, a page fault occurs, and the thread gets blocked. The page fault
handler then triggers the transfer of the corresponding block of disk data to RAM (using
metadata about the �le system for address calculations). The completion of that transfer is
indicated by an interrupt, in response to which the page table is updated and the corresponding
page is marked as read-only and clean, where clean indicates that the page is identical to the
copy stored on disk. Also, the thread accessing the �le is made runnable and can access its
data.

While read accesses just return the requested data, write accesses trigger another interrupt
as the page is marked read-only. Now, the interrupt handler marks the page as writable and
dirty. Being writable implies that further write accesses succeed without further interrupts,
and being dirty indicates that the version in RAM now di�ers from the version on disk. Thus,
when a thread requests to write data back to the �le, dirty pages need to be written to disk.
Afterwards, the �le's pages are marked as clean and read-only again.

3.5 Demand-Driven Program Loading

� Start of program is special case of previous slide

� Map executable �le into virtual memory

� Jump to �rst instruction

* Page faults automatically trigger loading of necessary pages

* No need to load entire program upon start

· Faster than loading everything at once

· Reduced memory requirements

3.5.1 Working Set

� OS loads part of program into main memory

� Resident set: Pages currently in main memory

� At least current instruction (and required data) necessary in main
memory

� Principle of locality

� Memory references typically close to each other

� Few pages su�cient for some interval

� Working set: Necessary pages for some interval

� Aim: Keep working set in resident set

* Replacement policies in next presentation

As discussed so far, typically not all pages of a process are located in RAM. Those that are
located in RAM comprise the resident set. For von Neumann machines at least the currently
executing instruction and its required data need to be present in RAM, and demand-driven
loading is a technique to provide that data on the �y.

8

Operating-Systems-Memory-II.org

As data is transferred in pages, one can hope that a newly loaded page does not only
contain one useful instruction or one useful byte of data but lots of them. Indeed, if you
think of a typical program it is reasonable to expect that the program counter is often just
incremented or changed by small amounts, e.g., in case of sequential statements, loops, or
local function calls. Similarly, references to data also often touch neighboring locations in
short sequence, e.g., in case of arrays or objects. This reasoning is known as principle of
locality, which implies that frequently only few pages in RAM are su�cient to allow prolonged
progress for a thread without page faults.

Please take a moment to convince yourself that without the principle of locality caching,
i.e., the transfer of some set of data from a large and slow storage area to a smaller and faster
storage area, would not be e�ective; neither the form of caching seen here, where RAM serves
as cache for disk data, nor CPU caches for RAM data.

The so-called working set (for some given time interval) of a thread T is that set of pages
which allows T to execute without page faults throughout the interval. Clearly, once in a while
new pages are added to the working set while other pages are removed since their contents
are not necessary any longer. Note that the working set is a hypothetical construct, whose
precise shape and evolution is unknown to the OS. However, the goal of memory management
is to manage the resident set in such a way that is contains the working set (and ideally not
much else). Page replacement policies, to be discussed in the next presentation, work towards
that goal.

4 Paging

4.1 Major Ideas

� Virtual address spaces split into pages, RAM into frames

� Page is unit of transfer by OS

* Between RAM and secondary storage (e.g., disks)

� Each virtual address can be interpreted in two ways

1. Integer number (address as binary number, as in Hack)

2. Hierarchical object consisting of page number and o�set

* Page number, determined by most signi�cant bits of address

* O�set, remaining bits of address = byte number within its
page

· (Detailed example follows)

� Page tables keep track of RAM locations for pages

� If CPU uses virtual address whose page is not present in RAM, the
Page fault handler takes over

4.2 Sample Memory Allocation

� Sample allocation of frames to some process

9

Figure 5: �Figure 6.10 of [Hai17]� by Max Hailperin under CC BY-SA 3.0;
converted from GitHub

Several subsequent slides will refer to this example, which shows a main memory situation
with just four frames of main memory. Clearly, that is an unrealistically small example, but
it is su�cient to demonstrate the main points. Here, a process with a virtual address space
of 8 pages is shown, some of which are allocated to frames as indicated by arrows. Note that
neighboring pages can (a) be mapped to frames in arbitrary order or (b) not be mapped to
RAM at all. The Xs indicate that no frame is assigned to hold pages 2-5 or page 7. Frame 2
is unused.

4.3 Page Tables

� Page Table = Data structure managed by OS

� Per process

� Table contains one entry per page of virtual address space

� Each entry contains

* Frame number for page in RAM (if present in RAM)

10

https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0610.pdf

* Control bits (not standardized, e.g., valid, read-only, dirty, exe-
cutable)

* Note: Page tables do not contain page numbers as they are im-
plicitly given by row numbers (starting from 0)

� Note on following sample page table

* �0� as valid bit indicates that page is not present in RAM, so
value under �Frame#� does not matter and is shown as �X�

4.3.1 Sample Page Table

� Consider previously shown RAM allocation (Fig. 6.10)

Figure 6: �Figure 6.10 of [Hai17]� by Max Hailperin under CC BY-SA 3.0;
converted from GitHub

� Page table for that situation (Fig. 6.11)

11

https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0610.pdf

Valid Frame#
1 1
1 0
0 X
0 X
0 X
0 X
1 3
0 X

4.3.2 Address Translation Example (1/3)

� Task: Translate virtual address to physical address

� Subtask: Translate bits for page number to bits for frame number

� Suppose

� Pages and frames have a size of 1 KiB (= 1024 B)

� 15-bit addresses, as in Hack

� Consequently

� Size of address space: 215 B = 32 KiB

� 10 bits are used for o�sets (as 210 B = 1024 B)

� The remaining 5 bits enumerate 25 = 32 pages

4.3.3 Address Translation Example (2/3)

� Hierarchical interpretation of 15-bit addresses

� Virtual address: 5 bits for page number 10 bits for o�set

� Physical address: 5 bits for frame number 10 bits for o�set

� Based on page table

� Page 0 is located in frame 1

� Page 0 contains virtual addresses between 0 and 1023, frame 1 physical
addresses between 1024 and 2047

� Consider virtual address 42

* 42 = 00000 0000101010

· Page number = 00000 = 0

· O�set = 0000101010 = 42

* 42 is located at physical address 00001 0000101010 = 1066 (=
1024 + 42)

12

4.3.4 Address Translation Example (3/3)

� Based on page table

� Page 6 is located in frame 3

� Page 6 contains addresses between 6*1024 = 6144 and 6*1024+1023 =
7167

� Consider virtual address 7042

* 7042 = 00110 1110000010

· Page number = 00110 = 6

· O�set = 1110000010 = 898

* In general, address translation exchanges page number with frame
number

· Here, 6 with 3

* 7042 is located at physical address 00011 1110000010 = 3970 (=
3*1024 + 898)

4.4 JiTT Tasks

4.4.1 JiTT: Address Translation

Answer the following questions in Learnweb.
Suppose that 32-bit virtual addresses with 4 KiB pages are used.

� How many bits are necessary to number all bytes within pages?

� How many pages does the address space contain? How many bits are
necessary to enumerate them?

� Where within a 32-bit virtual address can you �see� the page number?

4.4.2 JiTT: A quiz

4.5 Challenge: Page Table Sizes

� E.g., 32-bit addresses with page size of 4 KiB (212 B)

� Virtual address space consists of up to 232 B = 4 GiB = 220 pages

* Every page with entry in page table

* If 4 bytes per entry, then 4 MiB (222 B) per page table

· Page table itself needs 210 pages/frames! Per process!

� Much worse for 64-bit addresses

� Solutions to reduce amount of RAM for page tables

� Multilevel (or hierarchical) page tables (2 or more levels)

* Tree-like structure, e�ciently representing large unused areas

* Root, called page directory

· 4 KiB with 210 entries for page tables

· Each entry represents 4 MiB of address space

13

https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=60751#section-11

� Inverted page tables in next presentation

While the sample pages tables shown so far may seem simple to manage, pages tables can
be huge in practice. As page tables are used to locate data in RAM, a naïve implementation
might require the page tables themselves to be located in RAM in the �rst place. Let's see
how large page tables might get.

With 32-bit addresses, you see a calculation on this slide, showing that the page table for
every process requires up to 4 MiB of RAM. Note that those 4 MiB are pure OS overhead,
unusable for applications. So, after you booted your system half a GB of RAM may already
be gone.

Although this result is already pretty bad, for 64-bit systems the situation is much worse,
even if current PC processors do not use all 64 bits for addressing. Suppose 48 bits are used
for virtual addresses, again with 4 KiB pages. Then 236 pages may exist per process, now
maybe with 8 B per entry in the page table, leading to 239 B = 29 GiB = 512 GiB. In words:
A single page table might occupy 512 GiB of RAM, quite likely more than you've got.

Solutions to reduce the amount of RAM for page tables fall into two classes, namely
multilevel page tables and inverted page tables.

The key idea of multilevel page tables is that large portions of the theoretically possible
virtual address space remain unused, and such unused portions do not need to be represented
in the page table. To e�ciently represent smaller (used) and larger (unused) portions, the
page table is represented and traversed as a tree-like structure with multiple levels. The root
of that tree-like structure is always located in RAM and is called page directory. Each entry in
that page directory represents a large portion of the address space, in case of 32-bit addresses
and two levels (as on subsequent slides) each entry represents 1024 pages with a total size of
4 MiB. If such a 4 MiB region is not used at all, no data needs to be allocated in lower levels
of the tree like structure. Details are presented on subsequent slides.

The key idea of inverted page tables is that RAM is limited and typically smaller than
the virtual address space. Instead of storing each allocated frame per page as discussed so far,
with inverted page tables one entry exists per frame of RAM, recording what page of what
process is currently located in that frame (if any). Note that only one such inverted page table
needs to be maintained, whereas page tables exist per process. Also note that the number of
entries of the inverted table is determined by the number of frames in RAM, instead of the
(potentially much larger) number of pages of virtual address space. You will see how address
translation works with inverted page tables on later slides. Right now, you may want to think
about that yourself. Starting again from a page number for which the corresponding frame
number is necessary, how do you locate the appropriate entry in the inverted page table?
Clearly, a linear search is too slow.

5 Multilevel Page Tables

5.1 Core Idea

� So far: Virtual address is hierarchical object consisting of page number
and o�set

� Now multilevel page tables: Interpret page table as tree with �xed depth,
i.e., a �xed number of multiple levels

� (Visualizations on next two slides)

� For depth n, split page number into n smaller parts

* Two-level: Split 20 bits into two parts with 10 bits each

� To traverse page table (tree), use one part on each level

� Aside: On 64-bit machines, Linux uses 5-level tables by default since 2019-
09-16

14

Operating-Systems-Memory-II.org
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=18ec1eaf58fbf2d9009a752a102a3d8e0d905a0f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=18ec1eaf58fbf2d9009a752a102a3d8e0d905a0f

5.2 Two-Level Page Table

Page directory

(No pages
1024–2047)

(No page 1)

X

Page table

…

…… …Valid

Page frame

1 0 1

0 42

1 1

100 99

Pages
0–1023

Pages
1047552–1048575

Valid 1 0 1

XPointer

Figure 7: �IA-32 two-level page table� by Jens Lechtenbörger under CC BY-SA
4.0; Frame numbers and valid bits added to and third layer removed from Figure
6.13 of [Hai17] by Max Hailperin under CC BY-SA 3.0. Source at GitLab.

Note: Page table contains entries of an ordinary page table. Previously, valid
bit and page frame numbers were shown in columns; here, they are shown in
rows.

This �gure shows a two-level page table as used in Intel's 32-bit processor architecture
IA-32. The entry point to this two-level page table is called page directory and can point to
1024 chunks of the page table, each of which can point to 1024 page frames. Note that with
1024 entries of 4 B each, the page directory as well as chunks of the page table �t exactly into
pages and frames of 4 KiB. The leftmost pointer leading from the leftmost chunk of the page
table points to the frame holding page 0. Each entry can also be marked invalid, indicated
by an X in this diagram. For example, the second entry in the �rst chunk of the page table is
invalid, showing that no frame holds page 1. The same principle applies at the page directory
level as well; in this example, no frames hold pages 1024-2047, so the second page directory
entry is marked invalid.

15

https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0613.pdf
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0613.pdf
https://creativecommons.org/licenses/by-sa/3.0/
https://gitlab.com/oer/figures/blob/master/OS/hail_f0613_with_embedded_frame_nos.odg

5.2.1 Two-Level Address Translation

Figure 8: �Figure 6.14 of [Hai17]� by Max Hailperin under CC BY-SA 3.0;
converted from GitHub

This diagram shows the core of IA-32 paged address mapping. As explained previously, virtual
addresses are understood as hierarchical objects which are divided into a 20-bit page number
and 12-bit o�set within the page; the latter 12 bits are left unchanged by the translation
process. Due to the two-level nature of the page table, the 20-bit page number is subdivided
into a 10-bit page directory index and a 10-bit page table index. Each index is multiplied
by 4, the number of bytes in each entry, and then added to the base physical address of the
corresponding data structure, producing a physical memory address from which the entry is
loaded. The base address of the page directory comes from a special register, whereas the

16

https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0614.pdf

base address of the page table comes from the page directory entry.

5.3 JiTT: Questions, Feedback, Survey

1. This slide serves as reminder that I am happy to obtain and provide feed-
back for course topics and organization. If contents of presentations are
confusing, you could describe your current understanding (which might
allow us to identify misunderstandings), ask questions that allow us to
help you, or suggest improvements (maybe on GitLab). Please use the
session's shared document or MoodleOver�ow. Most questions turn out
to be of general interest; please do not hesitate to ask and answer where
others can bene�t. If you created additional original content that might
help others (e.g., a new exercise, an experiment, explanations concerning
relationships with di�erent courses, . . .), please share.

2. Please take some minutes to answer this anonymous survey in Learnweb
on your thoughts related to Just-in-Time Teaching (JiTT) and the pre-
sentation format for Operating Systems.

6 Looking at Memory

6.1 Linux Kernel: /proc/<pid>/

� /proc is a pseudo-�lesystem

� See https://man7.org/linux/man-pages/man5/proc.5.html

* (Speci�c to Linux kernel; incomplete or missing elsewhere)

� �Pseudo�: Look and feel of any other �lesystem

* Sub-directories and �les

* However, �les are no �real� �les but meta-data

� Interface to internal kernel data structures

* One sub-directory per process ID

* OS identi�es process by integer number

* Here and elsewhere, <pid> is meant as placeholder for such a
number

6.1.1 Video about /proc

This video, �Looking at /proc� by Jens Lechtenbörger, shares the presentation's license terms,
namely CC BY-SA 4.0.

The video shows some aspects of the /proc �lesystem related to memory management,
which are described in more abstract form on subsequent slides.

6.1.2 Drawing about /proc

Warning! External �gure not included: �/proc� © 2018 Julia Evans, all rights
reserved from julia's drawings. Displayed here with personal permission.
(See HTML presentation instead.)

17

https://gitlab.com/oer/OS
https://sso.uni-muenster.de/LearnWeb/learnweb2/mod/feedback/view.php?id=1938305
https://man7.org/linux/man-pages/man5/proc.5.html
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://drawings.jvns.ca/proc/

6.1.3 Drawing about man pages

Warning! External �gure not included: �Man pages are amazing� © 2016
Julia Evans, all rights reserved from julia's drawings. Displayed here with per-
sonal permission.
(See HTML presentation instead.)

6.2 Linux Kernel Memory Interface

� Memory allocation (and much more) visible under /proc/<pid>

� E.g.:

� /proc/<pid>/pagemap: One 64-bit value per virtual page

* Mapping to RAM or swap area

� /proc/<pid>/maps: Mapped memory regions

� /proc/<pid>/smaps: Memory usage for mapped regions

� Notice: Memory regions include shared libraries that are used by lots of
processes

6.3 GNU/Linux Reporting: smem

� User space tool to read smaps �les: smem

� See https://linoxide.com/memory-usage-reporting-smem/

� Terminology

� Virtual set size (VSS): Size of virtual address space

� Resident set size (RSS): Allocated main memory

* Standard notion, yet overestimates memory usage as lots of mem-
ory is shared between processes

· Shared memory is added to the RSS of every sharing process

� Unique set size (USS): memory allocated exclusively to process

* That much would be returned upon process' termination

� Proportional set size (PSS): USS plus �fair share� of shared pages

* If page shared by 5 processes, each gets a �fth of a page added
to its PSS

6.3.1 Sample smem Output

$ smem -c "pid command uss pss rss vss" -P "bash|xinit|emacs"

PID Command USS PSS RSS VSS

765 /usr/bin/xinit /etc/X11/Xse 220 285 2084 15952

1390 /bin/bash -c libreoffice5.3 240 510 2936 13188

826 /bin/bash /usr/bin/qubes-se 256 524 3008 13204

750 -su -c /usr/bin/xinit /etc/ 316 587 3368 21636

1251 bash 4864 5136 7900 26024

2288 /usr/bin/python /usr/bin/sm 5272 6035 9432 24688

1145 emacs 90876 93224 106568 662768

18

https://drawings.jvns.ca/man/
https://linoxide.com/memory-usage-reporting-smem/

6.3.2 Sample smem Graph

Figure 9: smem --bar pid -c "uss pss rss" -P "bash|xinit" (�Screenshot
of smem� under CC0 1.0; from GitLab)

7 Conclusions

7.1 Summary

� Virtual memory provides abstraction over RAM and secondary storage

� Paging as fundamental mechanism

* Isolation of processes

* Stable virtual addresses, translated at runtime

� Page tables managed by OS

� Address translation at runtime

� Hardware support via MMU with TLB

� Multilevel page tables represent unallocated regions in compact form

Bibliography

[Hai17] Max Hailperin. Operating Systems and Middleware � Supporting Con-

trolled Interaction. revised edition 1.3, 2017. url: https://gustavus.
edu/mcs/max/os-book/.

[Hai19] Max Hailperin. Operating Systems and Middleware � Supporting Con-

trolled Interaction. revised edition 1.3.1, 2019. url: https://gustavus.
edu/mcs/max/os-book/.

19

https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/blob/master/screenshots/smem.png
https://gustavus.edu/mcs/max/os-book/
https://gustavus.edu/mcs/max/os-book/
https://gustavus.edu/mcs/max/os-book/
https://gustavus.edu/mcs/max/os-book/

License Information

This document is part of an Open Educational Resource (OER) course on Op-
erating Systems. Source code and source �les are available on GitLab under
free licenses.

Except where otherwise noted, the work �OS08: Virtual Memory I�,© 2017-
2022 Jens Lechtenbörger, is published under the Creative Commons license CC
BY-SA 4.0.

No warranties are given. The license may not give you all of the
permissions necessary for your intended use.

In particular, trademark rights are not licensed under this license. Thus,
rights concerning third party logos (e.g., on the title slide) and other (trade-)
marks (e.g., �Creative Commons� itself) remain with their respective holders.

20

https://en.wikipedia.org/wiki/Open_educational_resources
https://gitlab.com/oer/OS
https://en.wikipedia.org/wiki/Free_license
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding

	Introduction
	OS Plan
	Today’s Core Questions
	Learning Objectives
	Previously on OS …
	Retrieval Practice
	Recall: RAM in Hack

	Big Picture
	Different Learning Styles

	Main Concepts
	Modern Computers
	Virtual Addresses
	Memory Management Unit

	Processes
	Pages and Page Tables
	Page Fault Handler

	Drawing for Page Tables

	Uses for Virtual Memory
	Private Storage
	Controlled Sharing
	Copy-On-Write Drawing
	Copy-On-Write (COW)

	Flexible Memory Allocation
	Non-Contiguous Allocation

	Persistence
	Demand-Driven Program Loading
	Working Set

	Paging
	Major Ideas
	Sample Memory Allocation
	Page Tables
	Sample Page Table
	Address Translation Example (1/3)
	Address Translation Example (2/3)
	Address Translation Example (3/3)

	JiTT Tasks
	JiTT: Address Translation
	JiTT: A quiz

	Challenge: Page Table Sizes

	Multilevel Page Tables
	Core Idea
	Two-Level Page Table
	Two-Level Address Translation

	JiTT: Questions, Feedback, Survey

	Looking at Memory
	Linux Kernel: /proc/<pid>/
	Video about /proc
	Drawing about /proc
	Drawing about man pages

	Linux Kernel Memory Interface
	GNU/Linux Reporting: smem
	Sample smem Output
	Sample smem Graph

	Conclusions
	Summary

