
OS10: Processes
*

Based on Chapter 7 and Section 8.3 of [Hai19]

Jens Lechtenbörger

Computer Structures and Operating Systems 2022

1 Introduction

1.1 OS Plan
� OS Overview (Wk 20)

� OS Introduction (Wk 20)

� Interrupts and I/O (Wk 21)

� Threads (Wk 22)

� Thread Scheduling (Wk 22)

� Mutual Exclusion (MX) (Wk 24)

� MX in Java (Wk 25)

� MX Challenges (Wk 25)

� Virtual Memory I (Wk 26)

� Virtual Memory II (Wk 26)

� Processes (Wk 27)

� Security (Wk 28)

Figure 1: OS course plan, summer 2022

1.2 Today's Core Questions

� What is a process?

� How are �les represented by the OS and how are they used for inter-process
communication?

1.3 Learning Objectives

� Explain process and thread concept

*This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.

1

Operating-Systems-Introduction.org
Operating-Systems-Introduction.org
Operating-Systems-Interrupts.org
Operating-Systems-Threads.org
Operating-Systems-Scheduling.org
Operating-Systems-MX.org
Operating-Systems-MX-Java.org
Operating-Systems-MX-Challenges.org
Operating-Systems-Memory-I.org
Operating-Systems-Memory-II.org
Operating-Systems-Processes.org
Operating-Systems-Security.org
https://lechten.gitlab.io/OS/Operating-Systems-Processes.html
https://gitlab.com/lechten/OS
https://gitlab.com/lechten/OS


� Perform simple tasks in Bash (continued)

� View directories and �les, inspect �les under /proc (or alternatives
for your OS), build pipelines, redirect in- or output, list processes
with ps

� Explain access control, access matrix, and ACLs

� Use chmod to modify �le permissions

1.4 Retrieval Practice

1.4.1 Recall: Processes

Warning! External �gure not included: �What's in a process?� © 2016 Julia
Evans, all rights reserved from julia's drawings. Displayed here with personal
permission.
(See HTML presentation instead.)

1.4.2 Previously on OS . . .

� What are processes and threads?

� What is a thread control block?

� What are kernel and user mode?

� How do threads enter kernel mode?

� How to execute shell commands as part of The Command Line Murders?

1.4.3 Quiz 1

1.4.4 Quiz 2

1.4.5 Quiz 3

Table of Contents

2 Processes

These notes summarize core process concepts for which subsequent slides o�er more details.
Processes are management units of our OSs. As you already know, you can think of a

process as a program in execution. E.g., if you open an app on your phone, this app is usually
managed as a process by the OS. Also, if you use a command line (as in The Command
Line Murders), the command line itself is one process (whose instructions are executed in the
context of a virtual address space), while commands such as grep lead to the creation of new
processes (with their own instructions and address spaces).

However, as you have seen already, the picture is more complicated as some �apps� may
really be managed with multiple processes by the OS, while also a single process may provide
functionality that looks like multiple �apps�. Ultimately, a process is whatever your OS de�nes
to be a process. In particular, each process is associated with one or more threads to execute
instructions and a single virtual address space that is (a) shared by its threads and (b) isolated
from the address spaces of other processes (and their threads).

Similarly to the use of thread control blocks to record management information for threads,
the OS uses a process control block for each process, where it next to other details keeps
tracks of resources used by the process (and its threads). We will in particular look at the
management of �les with �le descriptors and access rights, and we will do so via examples

2

https://drawings.jvns.ca/process/
Operating-Systems-Introduction.org
Operating-Systems-Threads.org
Operating-Systems-Interrupts.org
Operating-Systems-Interrupts.org
Operating-Systems-Introduction.org
Operating-Systems-Introduction.org
Operating-Systems-Introduction.org
Operating-Systems-Introduction.org
Operating-Systems-Introduction.org


of GNU/Linux. There, as you have seen earlier, the Linux kernel exports various pieces of
management information in the directory /proc, which is a great place to explore what is
happening behind the scenes.

2.1 Processes

� First approximation: Process ≈ program in execution

� However

* Single program can create multiple processes

· E.g., web browser with process per tab model

* What looks like a separate program may not live inside its own
process

· E.g., separate GNU Emacs window showing PDF �le via
PDF Tools

· (Window contents might be produced with help of di�erent
process, though)

� Reality: Process = Whatever your OS de�nes as such

� Unit of management and protection

* One or more threads of execution

* Address space in virtual memory, shared by threads within pro-
cess

* Management information

· Access rights

· Resource allocation

· Miscellaneous context

2.1.1 Aside: Single Address Space Systems

� We only consider the case where each process has its own address space

� OS acts as multiple address space system

� OS mainstream

� [Hai19] contains some details on single address space systems (beyond
scope of class)

� E.g., AS/400

2.2 Process Creation

� OS starts

� Check your OS's tool of choice to inspect processes after boot

� User starts program

� Touch, click, type

� Processes start other processes

3

Operating-Systems-Memory-I.org
https://www.chromium.org/developers/design-documents/process-models/#process-per-tab
https://www.gnu.org/software/emacs/
https://github.com/politza/pdf-tools


� POSIX Process Management API in [Hai19]

� Command line (e.g., bash) is a process

* Commands lead to creation of child processes

2.2.1 Bash as Command Line

� Recall: Command line as interface to OS to execute processes

� Unix command line historically called �shell�

* Command line itself is a process

* Lots of shell variants; Bash from The Command Line Murders
used here

� Command line can execute (1) builtin commands and (2) programs
as other commands

1. Builtin commands are executed internally

* Type help to execute one and see all of them

2. Programs are executed as new child processes (requires system
calls)

* E.g., cat, grep, less, man, ps

* By default, while child process for program runs, process of
bash waits (not on CPU but blocked) for return value of child

2.3 Process Control Block

� Similarly to thread control blocks the OS manages process control blocks
for processes

� Numerical IDs (e.g., own and parent, executing user)

� Address space information

� Privileges

� Resources (shared by threads)

* E.g., �le descriptors discussed next

� Interprocess communication

* Flags, signals, messages

2.3.1 Seeing Processes

� Recall: /proc is a pseudo-�lesystem which acts as interface to Linux kernel
data structures

� Subdirectories per process ID (e.g., /proc/42) allow to see details of
process control blocks

� Process listing command ps inspects /proc

� (Use man ps for implementation-speci�c details, following options are
for GNU/Linux)

� ps -e shows some details on all processes (IDs, time, etc.)

4

https://en.wikipedia.org/wiki/POSIX
Operating-Systems-Introduction.org
https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
Operating-Systems-Introduction.org
Operating-Systems-Threads.org
Operating-Systems-Memory-I.org


� ps -C <name> shows some details on all processes with the given
name

* Note that some processes, e.g., for cat may be too short-lived to
be seen with ps

� Other OSs come with their own tools

2.3.2 Counters for Context Switches

� /proc/<pid>/status

� File with status information of process

* View with, e.g.: cat /proc/42/status

� Selected information

� Process ID (also of parent process)

� Information concerning memory usage

� voluntary_ctxt_switches

* Thread gave up CPU (yield) or did system call

� nonvoluntary_ctxt_switches

* Thread removed from CPU (preempted) by OS

2.3.3 Sample Bash Loops

� Bash allows scripting, e.g., while loops with the builtin command while:

while <condition>; do <commands>; done

� Consider two in�nite loops and take the quiz on the next slide:

1. while true; do true; done

� Here, true is a builtin bash command that immediately returns
a true value.

2. while true; do sleep 1; done

� Here, sleep is not builtin, but creates a single-threaded process
whose thread sleeps for the indicated number of seconds before
the process exits.

2.3.4 Quiz

3 File Descriptors

(See Section 8.3 in [Hai19])

3.1 Drawing on File Descriptors

Warning! External �gure not included: �File descriptors� © 2018 Julia Evans,
all rights reserved from julia's drawings. Displayed here with personal permis-
sion.
(See HTML presentation instead.)

5

https://drawings.jvns.ca/file-descriptors/


3.2 File Descriptors

� OS represents open �les via integer numbers called �le descriptors

� Files are abstracted as streams of bytes

� Files provide abstraction for �real� �les, directories, devices, network
access, and more

* Typical operations: Open, close, read, write

� POSIX standard describes three descriptors (numbered 0, 1, 2) for
every process

0. Standard input, stdin (e.g., keyboard input)

1. Standard output, stdout (e.g., print to screen/terminal)

2. Standard error, stderr (e.g., print error message to terminal)

� Streams can be used for inter-process communication

3.3 Redirection of Streams

� Streams of bytes can be redirected

� E.g., send output to �le instead of terminal

* head names.txt > first10names.txt

· (Recall The Command Line Murders)

· Process for head outputs �rst lines of �le names.txt

· Code for head invokes system call to open and read the �le,
which happens via a newly allocated �le descriptor

· The > operator redirects stdout of process to �le first10names.txt

· File overwritten if existing, else newly created

� Also, lots of commands can access data on stdin

* head < names.txt

· The < operator redirects �le to stdin of process; here, ac-
cess of names.txt via stdin

3.4 Streams for Inter-Process Communication

� Streams can be connected via pipes

� E.g., send stdout of one process to stdin of another

* head names.txt | grep "Steve"

· (Recall The Command Line Murders)

· Here, stdout of process for head is connected via pipe op-
erator (|) to stdin of process for grep

· (grep searches for patterns)

3.4.1 Drawing on Pipes

Warning! External �gure not included: �Pipes� © 2016 Julia Evans, all rights
reserved from julia's drawings. Displayed here with personal permission.
(See HTML presentation instead.)

6

https://en.wikipedia.org/wiki/POSIX
Operating-Systems-Introduction.org
Operating-Systems-Introduction.org
https://drawings.jvns.ca/pipes/


3.5 File Descriptors under /proc

� For process with ID <pid>, sub-directory /proc/<pid>/fd indicates its
�le descriptors

� Entries are symbolic links pointing to real destination

� Use ls -l to see numbers and their destinations, e.g.:

lrwx------ 1 jens jens 64 Jun 26 15:34 0 -> /dev/pts/3

lrwx------ 1 jens jens 64 Jun 26 15:34 1 -> /dev/pts/3

lrwx------ 1 jens jens 64 Jun 26 15:34 2 -> /dev/pts/3

lr-x------ 1 jens jens 64 Jun 26 15:34 3 -> /dev/tty

lr-x------ 1 jens jens 64 Jun 26 15:34 4 -> /etc/passwd

* Use of /dev/pts/3 (a so-called pseudo-terminal, which repre-
sents user interaction with the command line) for stdin, stdout,
and stderr

* Access of �le /etc/passwd via �le descriptor 4

* (Beyond class, if you are curious: /dev/tty is mostly the same
as /dev/pts/3 here)

3.5.1 Hints for Own Experiments

� Di�erent OSs come with di�erent tools to inspect processes and open �les

� On GNU/Linux or Cygwin, you can inspect �le descriptors of long-
lives processes under /proc/<pid>/fd.

� Start a process (on the command line or otherwise)

� Use ps to identify process ID for given name

* One line per process; one column is process ID

* On GNU/Linux maybe: ps -o pid,lstart -C <name>

* For ps implementations without option -C, use grep: ps | grep

<name>

· (E.g., Cygwin or MacOS)

· In this case, you do not see column headers; �rst column
should be process ID

� As shown earlier, use ls -l /proc/<pid>/fd (with process ID iden-
ti�ed in previous step)

� Suggestions for Mac users

3.5.2 A Quiz

4 Access Rights

4.1 Fundamentals of Access Rights

� Who is allowed to do what?

� System controls access to objects by subjects

7

https://superuser.com/questions/733458/do-dev-tty-and-current-dev-pts-x-are-the-same-things
https://superuser.com/questions/453762/how-to-select-processes-by-command-name-when-using-ps-in-mac-os-x
https://stackoverflow.com/questions/20974438/get-list-of-open-files-descriptors-in-os-x


� Object = whatever needs protection: e.g., region of memory, �le,
service

* With di�erent operations depending on type of object

� Subject = active entity using objects: process

* Threads of process share same access rights

* Subject may also be object, e.g., terminate thread or process

� Subject acts on behalf of principal

� Principal = User or organizational unit

� Di�erent principals and subjects have di�erent access rights on
di�erent objects

* Permissible operations

4.1.1 Typical Access Right Operations

� In general, dependent on object type, e.g.:

� Files

* Create, destroy

* Read, write, append

* Execute

* Ownership

� Access rights

* Copy/grant

4.2 Representation of Access Rights

� Conceptual: Access (control) matrix

� Slices of access matrix

� Capabilities

� Access control lists

4.2.1 Access (Control) Matrix

� Matrix

� Principals and subjects as rows

� Objects as columns

� List of permitted operations in cell

8



4.2.2 Access Matrix: Transfer of Rights

� Transfer of rights from principal JDoe to process P1

� Figure 7.12 (a) of [Hai19]: copy rights

F1 F2 JDoe P1 . . .
JDoe read write
P1 read write
...

� Figure 7.12 (b) of [Hai19]: special right for transfer of rights

F1 F2 JDoe P1 . . .
JDoe read write
P1 use rights of
...

This small excerpt of an access matrix demonstrates (1) the representation of access rights
in general as well as (2) the transfer of access rights under the variants (a) by copying and
(b) with a special operation.

1. Representation of access rights. In the columns, di�erent objects are shown, namely
two �les called F1 and F2, principal JDoe, and process P1. Note that JDoe and P1

occur in column headers as well as row headers, indicating that they serve dual roles
as objects and subjects. Access right of process P1 (as subject) are indicated in the
row for P1. You see that P1 is allowed to read �le F1 and write �le F2. You also see
that subjects JDoe and P1 share the same access rights.

2. Transfer of access rights. Processes obtain their access rights from principals (users) on
whose behalf they are operating. For example, if you and me have got user accounts
on my machine and if both of us start the same text editor, then the two processes for
these text editors will have di�erent access rights, which are derived from our (users')
access rights: Typically, you will be able to read and write your own �les, while you
should be unable to access my �les (say, the �nal exam for this course), and vice versa.

In this example, P1 is a process working on behalf of principal (user) JDoe.

2.a In this �rst variant of the access matrix, the rights of JDoe were simply copied to P1

when P1 was created by JDoe.
2.b A second variant for the transfer of access rights might be used, which avoids copying

lots of access rights. Towards that end, a special operation may be used in the access matrix,
which treats principals as objects. Here, you see that process P1 has the right to �use rights
of� JDoe. Consequently, when P1 tries to access some object, the OS will check JDoe's rights.

4.2.3 Capabilities

� Capability ≈ reference to object with access rights

� Conceptually, capabilities arise by slicing the access matrix row-wise

� Principals have lists with capabilities (access rights) for objects

� Challenge: Tampering, theft, revocation

* Capabilities may contain cryptographic authentication codes

9



4.2.4 Access Control Lists

� Access Control List (ACL) = List of access rights for subjects/principals
attached to object

� Conceptually, ACLs arise by slicing the access matrix column-wise

� E.g., �le access rights in GNU/Linux and Windows (see Sec. 7.4.3 in
[Hai19])

4.3 Access Control Paradigms

� Discretionary access control (DAC)

� Owner grants privileges

� E.g., �le systems

� Mandatory access control (MAC)

� Rules about properties of principals, processes, resources de�ne per-
mitted operations

� Role based access control (RBAC)

� Permissions for tasks bound to organizational roles

* E.g., di�erent rights for students and teachers in Learnweb

4.3.1 DAC vs MAC

� With DAC, users are in control

� Users are lazy

� If defaults are too restrictive, too permissive rights may be granted

* �Allow all� is simpler than �ne-grained control

� With MAC, a system of rules is in control

� E.g., SELinux, AppArmor

� More complex to manage/use

� Respects more design principles for secure systems to be discussed in
next presentation

4.4 DAC File ACLs in GNU/Linux

4.4.1 Drawing on File ACLs

Warning! External �gure not included: �Unix permissions� © 2018 Julia
Evans, all rights reserved from julia's drawings. Displayed here with personal
permission.
(See HTML presentation instead.)

10

https://en.wikipedia.org/wiki/Security-Enhanced_Linux
https://en.wikipedia.org/wiki/AppArmor
Operating-Systems-Security.org
https://drawings.jvns.ca/permissions/


4.4.2 File ACLs

� ls lists �les and directories, with option -l in �long� form

� ls -l /etc/shadow /usr/bin/passwd

* - rw- r-- --- 1 root shadow 1465 Jan 21 2015 /etc/shadow

* - rws r-x r-x 1 root root 47032 Jan 27 01:40 /usr/bin/passwd*

� ls -ld /tmp

* d rwx rwx rwt 14 root root 20480 Jul 4 13:20 /tmp

* File type and permissions

· File (-), directory (d), symbolic link (l), . . .

· Read (r), write (w), execute (x) (for directories, �execute�
means �traverse�)

· Set user/group ID (s), sticky bit (t)

* Shortened ACLs

· Permissions not for individual users; instead, separately for
owner, group, other

· Owner: Initially, the creator; ownership can be transferred

· Group: Users can be grouped, e.g., to share �les for a joint
project

· Other: Everybody else

The long listings produced by ls with option -l show permissions in the form of three
triples, where hyphens indicate missing permissions. For �le /etc/shadow we see the permis-
sions rw-, r--, ---. Therefore:

1. The owner (in red) is allowed to read and write but not to execute

2. Group members (in blue) are allowed to read but neither to write nor to execute. (As
an aside, groups are created by the administrator, with a many-to-many relationship
between users and groups. Each �le is assigned to one group, e.g., the group for the
�le /etc/shadow is shadow here; �les' groups can be changed by their owners.)

3. Others (in green) do not have any permission

The �les shadow and passwd are owned by root (in red), who is the default administrator
on GNU/Linux. The �le shadow contains hashes of user passwords (hashing is a topic for the
next presentation), and passwd is the command with which users can change their passwords.
Clearly, users should be not able to change passwords of other users (except for root who can
do whatever she likes).

We see that only root can write to shadow (w is only present in red for the owner, while
blue and green parts do not contain that letter). So how can users change their own passwords,
which requires updates of the �le shadow?

We see that everyone is allowed to read and execute passwd. Usually, when a user executes
a command, the resulting process runs with the permissions of the executing user. Here,
however, we see an s for �set user ID� in red. With this permission, the OS will run the
process for passwd with permissions of the �le's owner, that is root. Thus, the process for
passwd has write permissions of root on shadow. (Of course, passwd needs to make sure that
users only change their own passwords.)

We also see the directory /tmp in which everybody is allowed to read and write. With the
green so-called sticky bit t, users are only allowed to delete their own �les, not those of other
users.

4.4.3 File ACL Management

� Management of ACLs with chmod

11

Operating-Systems-Security.org


� Read its man page

� Default permissions for new �les are con�gurable

� Beyond class topics, see help umask in bash

� Permissions can be represented with bit pattern or symbolically

� Previous drawing illustrates bit patterns for r, w, x

� Symbolic speci�cations contain

* one of (among others) u, g, o for user, group, others, resp.,

* followed by + or - to add or remove a permission,

* followed by one of r, w, x, s, t (and more)

� E.g., chmod g+w file.txt adds write permissions for group mem-
bers on file.txt

5 Conclusions

5.1 Summary

� Process as unit of management and protection

� Threads with address space and resources

* Including �le descriptors

� Access control as one protection mechanism

� File access abstracted via numeric �le descriptors as streams

� Redirection and pipelining for inter-process communication

� Access control restricts operations of principals via subjects on objects

� GNU/Linux �le permissions as example for ACLs

Bibliography

[Hai19] Max Hailperin. Operating Systems and Middleware � Supporting Con-

trolled Interaction. revised edition 1.3.1, 2019. url: https://gustavus.
edu/mcs/max/os-book/.

License Information

This document is part of an Open Educational Resource (OER) course on Op-
erating Systems. Source code and source �les are available on GitLab under
free licenses.

Except where otherwise noted, the work �OS10: Processes�, © 2017-2022
Jens Lechtenbörger, is published under the Creative Commons license CC BY-
SA 4.0.

No warranties are given. The license may not give you all of the
permissions necessary for your intended use.

12

https://gustavus.edu/mcs/max/os-book/
https://gustavus.edu/mcs/max/os-book/
https://en.wikipedia.org/wiki/Open_educational_resources
https://gitlab.com/oer/OS
https://en.wikipedia.org/wiki/Free_license
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding


In particular, trademark rights are not licensed under this license. Thus,
rights concerning third party logos (e.g., on the title slide) and other (trade-)
marks (e.g., �Creative Commons� itself) remain with their respective holders.

13


	Introduction
	OS Plan
	Today’s Core Questions
	Learning Objectives
	Retrieval Practice
	Recall: Processes
	Previously on OS …
	Quiz 1
	Quiz 2
	Quiz 3


	Processes
	Processes
	Aside: Single Address Space Systems

	Process Creation
	Bash as Command Line

	Process Control Block
	Seeing Processes
	Counters for Context Switches
	Sample Bash Loops
	Quiz


	File Descriptors
	Drawing on File Descriptors
	File Descriptors
	Redirection of Streams
	Streams for Inter-Process Communication
	Drawing on Pipes

	File Descriptors under /proc
	Hints for Own Experiments
	A Quiz


	Access Rights
	Fundamentals of Access Rights
	Typical Access Right Operations

	Representation of Access Rights
	Access (Control) Matrix
	Access Matrix: Transfer of Rights
	Capabilities
	Access Control Lists

	Access Control Paradigms
	DAC vs MAC

	DAC File ACLs in GNU/Linux
	Drawing on File ACLs
	File ACLs
	File ACL Management


	Conclusions
	Summary


